
Nurturing Process - Capstone Project 3 – 1/2

COEPD – TradiƟonal Development

Project Name: Case Study – 1

A customer can make a payment either by Card or by Wallet or by Cash or by Net banking.

Q1. Draw a Use Case Diagram

Answer:

Q2. Derive Boundary Classes, Controller classes, EnƟty Classes.

Answer:

Boundary Classes, Controller classes, EnƟty Classes are derived as below,

Boundary Classes: A Boundary Class is a type of class used in soŌware design, parƟcularly in the
context of object-oriented design and the Model-View-Controller (MVC) architecture. It acts as an
interface between the system and external factors, such as users, external systems, or devices.
CombinaƟon of 1 actor and a use case is one boundary class, CombinaƟon of 2 actors and a use case
is two boundary class.

Example: Customer RegistraƟon, Customer Login, Bank Server Login.

Controller Classes: A Controller Class is a key component in soŌware design, parƟcularly in the
Model-View-Controller (MVC) architectural paƩern. Its primary role is to manage the flow of data
between the Model (business logic and data) and the View (user interface). It processes incoming
requests, handles user input, and updates the model and view accordingly.

Example: LoginController, PaymentController, EmailController.

EnƟty Classes: An EnƟty Class represents core business objects or concepts in a soŌware
applicaƟon. It typically encapsulates data and business logic related to that data. EnƟty classes are
oŌen used in the Model layer of the Model-View-Controller (MVC) design paƩern and are central to
the Domain Model in domain-driven design (DDD).

Example: Customer, Bank Server.

Q3. Place these classes on a three Ɵer Architecture.

Answer:

ApplicaƟon Layer

 CustomerRegistraƟon
 CustomerLogin
 BankServerLogin

Business Logic Layer

(Primary Actor associated with
the Boundary Class)

 Customer
 Bank Server

Data Layer

(All the EnƟty Classes)
 Customer
 Bank Server
 Cash
 Card
 Net banking

Q4. Explain Domain Model for Customer making payment through Net Banking

Answer:

Domain Modelling: Domain Modelling is the process of creaƟng a conceptual representaƟon of the
key elements, relaƟonships, and rules within a specific domain or problem space in soŌware
development. It helps define how data and processes are structured in a system by modelling real-
world enƟƟes and their interacƟons. Key Elements can be menƟoned as below,

 EnƟƟes: Represents, the key or the object within the domain. Example: Customer, Payments,
Order.

 AƩributes: ProperƟes of a parƟcular enƟty. Example: Name, Email, Phone, Address, DOB.
 RelaƟonships: ConnecƟons or InteracƟon between the EnƟƟes. Example: CUSTOMER places

ORDER & ORDER contains mulƟple PRODUCTS.
 Aggregates: EnƟƟes, which are grouped in a single unit. Example: ORDER contains ORDER

ITEM & SHIPPING DETAILS.
 Business Rules: These can also be called as the Constraints which defines the Domain.

Example: Payment is the pre-requisite for the Delivery of the Product.

Q5. Draw a sequence diagram for payment done by Customer Net Banking

Answer:

Sequence Diagram: A Sequence Diagram is a type of UML (Unified Modelling Language) diagram that
visually represents the interacƟon between objects or components in a system over Ɵme. It shows
how objects communicate through method calls or messages in a sequenƟal order.

Q6. Explain Conceptual Model for this Case

Answer: A Conceptual Model is a high-level representaƟon of how a system or process works. It
focuses on abstract concepts and relaƟonships between them, providing a simplified overview of the
system's structure without diving into technical details. Here are some key components below,

 EnƟƟes: The main objects or concepts in the system, Example: Customer, Product.
 AƩributes: DescripƟve properƟes of the enƟƟes, Example: Customer Name, Product Price.
 RelaƟonships: ConnecƟons between enƟƟes, Example: A Customer places an Order.
 Constraints: Rules governing how enƟƟes interact, Example: Each order must have at least

one product.

Q7. What is MVC architecture? Explain MVC rules to derive classes from use case diagram and
guidelines to place classes in 3-Ɵer architecture.

Answer:

MVC Architecture: MVC Architecture stands for Model-View-Controller, a design paƩern used to
develop user interfaces by separaƟng applicaƟon logic into three interconnected components. This
separaƟon makes applicaƟons more modular, scalable, and easier to maintain.

Model: The Model represents the data and the business logic of the applicaƟon. Model is
responsible for mulƟple tasks like managing the applicaƟon's data, performing data validaƟon,
implemenƟng business rules, and handling data access operaƟons. Model does not depend on how
the data is presented or how the user interacts with the applicaƟon. The model class is known about
all the data that is needed to be displayed. This layer corresponds to the data-related logic that
the user works with. It represents the data that is being transferred between View and Controller. It
can add or retrieve the data from the database. It responds to the controller’s request because the
controller cannot interact with the database by itself. The model interacts with the database and give
the requested data. All the model classes are nothing but the enƟƟes. Model classes are represented
as enƟty class.

View: The View is responsible -for presenƟng the data to the user for handling the user interface.
The View can be a web page, a desktop applicaƟon window, or any other form of user interface. It
receives input from the user and passes it to the Controller for processing. It represents the
presentaƟon of the applicaƟon. View refers to the model. It takes the data from the Model and
renders it in a way that is suitable for the user's display or interacƟon. For rendering the data, it uses
query method. View does not depend upon applicaƟon logic. View class are represented as
boundary class.

Controller: The Controller acts as an intermediary between the Model and the View. It receives input
from the user (via the View), processes the input by invoking the appropriate method in the Model,
and then updates the View with the new data or state. The Controller handles user interacƟons,
interprets user input, and translates it into instrucƟons for the Model or the View. It coordinates the
flow of data between the Model and the View, ensuring that they remain separated and
independent of each other. Whenever the user requests for anything, that request first goes to
the controller. Controller works on the user’s request.

Rules to derive from the Use case:

1. CombinaƟon of one actor and one-use case results in one boundary class. CombinaƟon of
two actor and one-use case results in two boundary class. CombinaƟon of three actor and
one-use case results in three boundary class.

2. Use case will result in controller class.
3. Each Actor will result in one enƟty class.

In 3-Tier Architecture:

Model Classes Customer, Payment, Net-Banking, Card, Cash.
View Classes Login, View, PaymentOpƟonView, NetBankingView, BankSelecƟonView,

CredenƟalView, PaymentAmountView, PaymentConfirmaƟonView, Logout
View

Controller Classes LoginController, PaymentOpƟonController, NetBankingController,
BankSelecƟonController, CredenƟalsController, PaymentAmountController,
PaymentConfirmaƟonController, LogoutController.

Guidelines to place in 3-Tier Architecture: There are 3 Layers stated as below,

 PresentaƟon Layer: This layer is nothing but a user interface. View is inside this layer.
 ApplicaƟon Layer: This layer is nothing but business logic. Model and controller are inside

this layer.
 Data Layer: Classes which are responsible for data access and storage are in this layer. It

contains the classes which interacts with the database, Files, and other data sources.

Q8. Explain BA contribuƟons in project (Waterfall Model – all Stages)

Answer:

Waterfall Model: Waterfall model relies on documentaƟon to ensure that the project is well defined
and project team is working toward clear goals. Ones that phase has been completed and ones we
move to the next phase, we cannot go back to the previous phase to make changes. This model
is stable for the projects when the requirements are clear.

BA ContribuƟon in the project is as menƟoned below,

Sr. No Stage AcƟviƟes Resources ArƟfacts
1. Requirement

Gathering
Stakeholders are idenƟfied.

All the requirements are gathered
from the stakeholder. BA and

Project Manager parƟcipates in this
phase. AŌer compleƟng this phase,

BRD will be generated.

BA, Project
Manager.

BRD.

2. Requirement
Analysis

The requirements are analysed to
understand the scope of

the project. Analysing means the
BA will check all the requirements,

if he founds conflicƟng
requirements then the BA will talk
to the concerned stakeholder to
clear it, remove the ambiguous

requirements.

BA, Project
Manager, Tech

Team – Sol
Arch, NW Arch,

DB Arch.

FS/FRS, SSD,
SRS, RTM.

3. Design AŌer the requirements are cleared,
Design phase starts. This has a

detailed design document
that outlines the soŌware

architecture, user interface, and
system components.

Tech Team –
Solu Arch, NW
Arch, DB Arch,
GUI Designer

HDD, ADD,
SoluƟon

Document.

4. Development
(Coding)

The Development phase include
implementaƟon. It involves coding
the soŌware based on the design

specificaƟons. Programmers or
developer are involved in this

phase. Here BA acts as a mediator
between the development team

and the stakeholders.

Programmers,
Developers,

SoŌware
Engineers.

LDD/CDD,
ApplicaƟons

5. TesƟng In the tesƟng phase, the soŌware is
tested to ensure that it meets the

requirements and is free from
defects. Testers are involved in this

phase.

Testers, QA,
QC.

Test
Documents,
ApplicaƟon

with less
Errors.

6. Process
(ConfiguraƟon
Management)

Here, BA will Contribute with the
Project Manager for configuring
the documentaƟon according to

the need and requirements.

Project
Manager

RTM

7. Deployment &
ImplementaƟon.

BA, ensures that there is smooth
transiƟon from development phase

to the producƟon phase.
ImplementaƟon is the final stage

of waterfall model. It involves
running the code for the very first
Ɵme in producƟon phase. Release

manager handles this phase.

Release
Engineers

SoluƟon
Document.

8. Maintenance Running the code for second me
in the producƟon phase is called

maintenance. BA, contribute with
the support Engineers.

Support
Engineers,
SoŌware

Engineers.

Test
Documents.

Q9. What is conflict management? Explain using Thomas – Kilmann technique

Answer:

Conflict Management: “Conflict Management” refers to the process of idenƟfying, addressing, and
resolving disputes or disagreements construcƟvely to maintain a producƟve and collaboraƟve
environment. It involves strategies, techniques, and pracƟces aimed at minimizing the negaƟve
impact of conflict while fostering posiƟve outcomes. Types of conflict in the OrganizaƟon can be
menƟoned as below,

 Task Conflict: Disagreements about tasks, goals, or project direcƟon.
 RelaƟonship Conflict: Interpersonal disputes arising from personal differences.
 Process Conflict: Issues related to how work is done, including procedures and

responsibiliƟes.

There are 5 steps for idenƟfying the conflicts which are stated below,

 IdenƟfying the Conflict: To IdenƟfy the Problem Statement or the Challenge.
 Discussing in Detail: ElaboraƟon of the Conflict with respect to the Problem Statement

within the Team Players.
 Agree with the Root Problem: SaƟsfying the Problem Statement with specific soluƟon.
 Check for every possible soluƟon for the conflict: Review of the Conflict and SoluƟons.
 NegoƟate the soluƟon to avoid future conflict: SoluƟon to the futurisƟc Problems.

Thomas – Kilmann technique: Is a framework used to address and manage conflict effecƟvely. It
idenƟfies five conflict-handling styles based on two dimensions menƟoned below,

 AsserƟveness - The extent to which a person tries to saƟsfy their own needs.
 CooperaƟveness - The extent to which a person tries to saƟsfy the needs of others.

The five conflict handling style technique is menƟoned below,

 CompeƟng (High AsserƟveness, Low CooperaƟveness)
Focus: Winning the conflict at the other party's expense.
Use When: Quick decisions are needed, or vital issues are at stake.
Risk: Can damage relaƟonships if overused.

 CollaboraƟng (High AsserƟveness, High CooperaƟveness)
Focus: Finding a win-win soluƟon that saƟsfies both parƟes.
Use When: Long-term soluƟons are needed, or the issue is criƟcal.
Benefit: Builds trust and strengthens relaƟonships.

 Compromising (Moderate AsserƟveness, Moderate CooperaƟveness)
Focus: Finding a middle ground where both parƟes give up something.
Use When: Time is limited, and mutually acceptable soluƟons are required.
Risk: SoluƟons may be temporary or less saƟsfying.

 Avoiding (Low AsserƟveness, Low CooperaƟveness)
Focus: Ignoring or sidestepping the conflict.
Use When: The issue is trivial, or emoƟons need to cool down.
Risk: Problems can escalate if avoidance is overused.

 AccommodaƟng (Low AsserƟveness, High CooperaƟveness)
Focus: SaƟsfying the other party’s needs at your expense.
Use When: Preserving relaƟonships or showing goodwill is more important.
Risk: May cause resentment if personal needs are consistently neglected.

Q10. List down the reasons for project failure.

Answer:

Project Failure: Project Failure occurs when a project does not meet its defined objecƟves,
deliverables, or expectaƟons. It happens when the project's outcomes deviate significantly from the
original goals in terms of scope, Ɵme, cost, or quality.

Reasons are to be followed,

 Improper Requirement Gathering: If the requirements of the project are not gathered
correctly, then this can lead to project failure.

 Lack of stakeholder involvement: A project can fail if the stakeholders are not parƟcipaƟng
in the process. The stakeholder’s input and feedback play very important role to meet the
goals.

 IneffecƟve or less communicaƟon: If there are communicaƟon issues between stakeholders,
team members then this can lead to misunderstandings or delays in project or even can
lead to project failure.

 Poor Risk Management: Poor risk management can also lead to project failure. The team
fails to idenƟfy the risks and do the risk miƟgaƟon, which can lead to unexpected challenges
or delays in project. Lack of user involvement. Lack of execuƟve support.

 UnrealisƟc ExpectaƟon: Means the goals that cannot be achieved or the goals that are out
of scope.

 Improper planning: The project can fail if the planning is not done properly. The milestones,
goals should be discussed. If there is no proper planning, then team may face difficulƟes in
addressing the issues or to track the progress.

 Insufficient Resources: Insufficient resources can also lead to project failure. The project may
fail due to lack of technology knowledge or lack of finances.

Q11. List the Challenges faced in projects by BA?

Answer:

Therefore, Challenges faced by the BA are to be followed,

1. Lack of Training.
2. Obtaining signoff on the requirement.
3. Change Management.
4. Co-ordinaƟon between developers and testers.
5. ConducƟng MeeƟngs.
6. Making sure the Status report is effecƟve.
7. Driving clients for UAT compleƟon.
8. Making sure that the project is going on the right track and deliver as per the Ɵmelines

without any issues.

9. Gathering clear and Unambiguous requirement.
10. Unable to understand what stakeholder is conveying
11. Scope Creep, change in the requirement or the scope of the project during the project

lifecycle can lead to scope creep.
12. Managing the stakeholder with conflicƟng interest, can be a difficult task for BA.
13. Poor communicaƟon between stakeholder and BA can affect the process of gathering the

informaƟon.
14. Technical Complexity.

Q12. Write about Document Naming Standards.

Answer:

Document Naming Standard: A Document Naming Standard is a set of guidelines that define how
documents should be named within an organizaƟon or project. This standard ensures consistency,
clarity, and ease of document retrieval and management.

The use of the Document Naming Standard can be done as follows,

 Consistency: Ensures uniform naming across all files.
 OrganizaƟon: Helps categorize and sort files logically.
 Searchability: Makes locaƟng documents faster and easier.
 Version Control: Tracks revisions and updates effecƟvely.
 CollaboraƟon: Enhances team collaboraƟon by reducing confusion.

Key Elements include for the Document Naming Standard can be menƟoned as below,

 Prefix or IdenƟfier: Indicates the project, department, or file type (e.g., HR_, FIN_, PRJ_).
 DescripƟve Name: Describes the content or purpose of the document (e.g., Budget Report,

MeeƟng Minutes).
 Date Format: Standardized date format, typically YYYY-MM-DD (e.g., 2024-12-17).
 Version Number: Indicates revisions (e.g., v1.0, v2.1).
 Document Status: Specifies the stage of the document (e.g., DRAFT, FINAL, APPROVED). This

can be OpƟonal.
 Author or Creator: IniƟals or names of contributors (e.g., JDoe). This can be OpƟonal.

Here is the Example for the for the Document,

Format: [ProjectID] [Document Type] V[x]D[y]. extension

Example: PQ777FRDV1D1.docx

Q13. What are the Do’s and Don’ts of a Business Analyst.

Answer:

Sr. No Do’s Don’ts
1. Take Ɵme to understand the business

objecƟves and problems.
Do not make assumpƟons without
validaƟng them with stakeholders.

2. Facilitate clear and effecƟve
communicaƟon among stakeholders and

project teams.

Do not overwhelm stakeholders with
excessive technical details or unnecessary

informaƟon.
3. Maintain clear, concise, and well-organized

documentaƟon (e.g., use cases, user
stories).

Do not skip important documentaƟon or
skip validaƟng requirements with

stakeholders.
4. Keep the end-user in mind when defining

requirements.
Do not ignore non-funcƟonal

requirements (e.g., performance, security).
5. PrioriƟze requirements based on business

value and urgency (e.g., MoSCoW).
Do not prioriƟze incorrectly or neglect
important requirements for short-term

gains.
6. Regularly engage with stakeholders to

ensure alignment.
Do not work in isolaƟon or avoid difficult

conversaƟons about project direcƟon.

Q14. Write the difference between packages and sub-systems

Answer:

Sr. No Package Subsystem
1. A Package can be defined as a logical

grouping of related classes or modules.
A subsystem can be defined as a self-

contained system or component
performing a specific funcƟon.

2. The purpose of the Package is to
organizes and manages code structure.

The purpose of the Package is to
implements major features or funcƟons.

3. AbstracƟon level for the package is
Low-level, closer to the code base.

AbstracƟon level for the subsystem is
high-level, represenƟng a funcƟonal

system.
4. Packages are dependent on the internal

dependencies between classes.
Subsystem are dependent on the

managing between different systems or
external services.

5. Visibility of the packages is used within
a single system or applicaƟon.

It may be integrated with the other
systems.

6. Example: Libraries or packages in
Python or Java.

Example: Payment Processing,
AuthenƟcaƟon, Data Storage.

Q15. What is camel-casing and explain where it will be used.

Answer:

Camel Casing: Camel Casing is a naming convenƟon used in programming where mulƟple words are
combined into a single idenƟfier without spaces, and each word aŌer the first begins with a capital
leƩer. This convenƟon improves readability and disƟnguishes words within a name.

Types of Camel Casing are menƟoned below,

Lower Camel Case (camelCase): The first word is in lowercase, and each subsequent word starts with
a capital leƩer.

Usage: Commonly used for variable names, funcƟon names, and object properƟes.

Examples:

 firstName
 totalAmount
 calculateSum

Upper Camel Case (PascalCase): Every word starts with a capital leƩer, including the first one.

Usage: Typically used for class names, types, and namespaces.

Examples:

 CustomerDetails
 OrderProcessor
 StudentInfo

In BA, Camel Casing is used for the requirements documentaƟon. In requirement documentaƟon, BA
oŌen use camel-casing to name the enƟƟes like use case, features, user stories like
validateCustomerDetails, calculateInterestRate, etc.

Q16. Illustrate Development server and what are the accesses does business analyst has?

Answer:

Development Server: A Development Server is a local or remote server environment used by
developers to build, test, and debug applicaƟons during the development process. It simulates a real
server but is configured specifically for development needs, offering flexibility and tools that aid in
wriƟng and tesƟng code. It provides plaƞorm for the developers and the testers to build, test,
develop and debug the applicaƟon.

So, as an access for BA are follows,

 Read Only: BA’s may be granted with the read only access to the development server. This
will allow them to view the user interface of the applicaƟon, navigate through the features
and, they will be able to observe the behaviour of the applicaƟon.

 Limited Access: Depending upon the project needs, the BA’s will be granted limited access to
the specific modules in the applicaƟon.

 Limited ConfiguraƟon Access- Here, BA have the authority to make changes in certain
areas of applicaƟon where they have the access.

Q17. What is Data Mapping?

Answer:

Data Mapping: Data Mapping is the process of matching data elements from one data source to
corresponding elements in another. It defines how data fields from a source system correspond to
fields in a target system, enabling data integraƟon, migraƟon, and transformaƟon. Its key aspects
include,

 Source Data: The original data locaƟon (e.g., a database, file, or API).
 Target Data: The desƟnaƟon where the data is moved or transformed.
 Mapping Rules: Rules that define how each data element from the source relates to the

target, including any transformaƟons, conversions, or calculaƟons.

Different Types of Data Mapping includes,

 Manual Mapping: Done manually by developers or data analysts. Best for small or simple
projects.

 Automated Mapping: Performed using specialized data integraƟon tools. Suitable for
complex or large-scale projects.

 Schema Mapping: Involves matching enƟre data structures or schemas between two
databases.

Purpose Include,

 Data integraƟon: While combining the data from different sources, it ensures that the data
is properly matched.

 Data MigraƟon: While migraƟng the data from legacy system(source) to the new
system(desƟnaƟon), the data elements are mapped accurately into the new system.
Required techniques are applied to covert the data into the format that is required by the
new system.

 Data TransformaƟon: Data transformaƟon means converƟng the data from one format to
other.

Q18. What is API. Explain how you would use API integraƟon in the case of your applicaƟon Date
format is dd-mm-yyyy and it is accepƟng some data from Other ApplicaƟon from US whose Date
Format is mm-dd-yyyy.

Answer:

API: Stands for “ApplicaƟon Programming Interface.” It is a set of rules, protocols, and tools that
allow different soŌware applicaƟons to communicate and interact with each other. It defines how
requests are made and responses are received between systems, enabling seamless data exchange
and funcƟonality sharing.

The working of the API is based on the below process menƟoned,

 Client Request: A client (e.g., a web browser or mobile app) sends a request to the API with
specific instrucƟons.

 Server Processing: The API processes the request, interacts with the underlying database or
service, and retrieves the required informaƟon.

 Response: The API sends back a response, oŌen in formats like JSON or XML, containing the
requested data or acƟon result.

Types of API is stated below,

 Web APIs: Accessible over the internet using protocols like HTTP/HTTPS. Examples: REST,
GraphQL, SOAP.

 OperaƟng System APIs: Allow applicaƟons to access operaƟng system features (e.g., file
management). Example: Windows API.

 Library/Framework APIs: Expose funcƟonaliƟes from a soŌware library or framework.
Example: NumPy API in Python.

 Database APIs: Enable communicaƟon between applicaƟons and databases. Example: SQL
queries through a database driver.

To use the ApplicaƟon IntegraƟon, to change the format of the date below steps can be followed,

Step 1: API Request/Response IdenƟficaƟon

 IdenƟfy the API request and response structure.

 Determine where the date field exists and its format in the incoming data.

Step 2: Data TransformaƟon Logic

 Implement date format conversion using a programming language or middleware.

Step 3: IntegraƟon ImplementaƟon

 Data ValidaƟon: Validate the incoming date format using the correct paƩern.
 Data Conversion: Apply the conversion logic before saving or processing data.
 Data Storage or Forwarding: Save the converted date in the applicaƟon's database or

forward it to another service.

Step 4: API Response (if applicable)

 When sending data back to the US applicaƟon, convert the date from dd-mm-yyyy to mm-
dd-yyyy if required.

Step 5: TesƟng & Error Handling

 Unit Tests: Test various date scenarios, including edge cases like leap years and invalid dates.
 Error Handling: Implement try-except blocks or API response validaƟon to handle incorrect

formats gracefully.

